The transport properties of oxygen vacancy-related polaron-like bound state in HfOx

نویسندگان

  • Zhongrui Wang
  • HongYu Yu
  • Haibin Su
چکیده

The oxygen vacancy-related polaron-like bound state migration in HfOx accounting for the observed transport properties in the high resistance state of resistive switching is investigated by the density functional theory with hybrid functional. The barrier of hopping among the threefold oxygen vacancies is strongly dependent on the direction of motion. Especially, the lowest barrier along the <001> direction is 90 meV, in agreement with the experimental value measured from 135 K to room temperature. This hopping mainly invokes the z-directional motion of hafnium and threefold oxygen atoms in the vicinity of the oxygen vacancy resulted from the synergized combination of coupled phonon modes. In the presence of surface, the lowest barrier of hopping between the surface oxygen vacancies is 360 meV along the <101> direction, where the significant surface perpendicular motion of hafnium and twofold oxygen atoms surrounding the oxygen vacancy is identified to facilitate this type of polaron-like bound state migration. Thus, the migration on the surfaces could be more important at the high temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of polaron hopping in leakage current behavior of a SrTiO3 single crystal

We studied the ionic/electronic transport and resistance degradation behavior of dielectric oxides by solving the electrochemical transport equations. Here, we took into account the non-periodical boundary conditions for the transport equations using the Chebyshev collocation algorithm. A sandwiched NijSrTiO 3 jNi capacitor is considered as an example under the condition of 1.0 V, 1.0 lm thickn...

متن کامل

Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide

Electron localization and polaron mobility in oxygen-deficient as well as Li-doped monoclinic tungsten trioxide have been studied in the adiabatic limit in the framework of density functional theory. We show that small polarons formed in the presence of oxygen vacancy prefer the bipolaronic W5+-W5+ configuration, whereas the W6+-W4+ configuration is found to be metastable. Our calculations sugg...

متن کامل

The simultaneous effect of 3d impurities of transition metals and oxygen vacancy defect on TiO2 anatase and rutile

In this work, the formation of oxygen-vacancy defect in 3d metals-doped TiO2 anatase and rutile structures is first investigated. The systematic calculations of formation energy, crystalline stability, band structure and density of state (DOS) of TiO2 samples of anatase and rutile doped with 3d transition metals with and without oxygen defect is done using FHI-aims as a software package based o...

متن کامل

Hybrid Molten/Solid In2O3-Bi2O3 Oxygen Ion Transport Membranes

The hybrid molten/solid In2O3 - 30-48 wt.% Bi2O3 oxide materials were studied with respect to their transport properties. The conductivities, oxygen ion transport numbers and oxygen permeation fluxes have been measured by using the four-probe DC, volumetric measurements of the faradaic efficiency and gas flow techniques, respectively. We show that the...

متن کامل

مطالعه اثر تهی جا در جایگاه لانتانیوم روی خصوصیات ساختاری، الکتریکی و مغناطیسی ترکیب منگنایت La1-xMnO3+δ، ساخته شده تحت شرایط متفاوت

 In this investigation, the effect of Lanthanum vacancy on the structural, electrical and magnetic properties of La1-xMnO3+δ manganite (x=0, 0.05) was studied. Decreasing La3+ amount in samples led to creation of some Mn4+ cations. By increasing the Mn4+content in atomic structure of samples, double exchange interaction was strengthened. Results of Ac magnetic susceptibility measurements indica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013